Posts Tagged ‘tools’

Building 2d animations using Inkscape and Synfig

Friday, March 16th, 2012

In this blog post we want to share a method to animate Inkscape SVG objects using Synfig Studio, trying to follow a similar approach to the Building 2d sprites from 3d models using Blender blog post.

A small introduction about Inkscape

Inkscape is one of the best open source, multi platform and free tools to work with vector graphics using the open standard SVG.

After some time using Inkscape, I have learned how to make a lot of things and feel great using it. However, it lacks of some features which would make it a great tool, for example, a way to animate objects by making interpolations of its different states defining key frames and using a time line, among others.

It has some ways to create interpolations of objects between two different states but it is unusable since it doesn't work with groups, so if you have a complex object made of a group of several other objects, then you have to interpolate all of them. If you make some modification on of the key frames, then you have to interpolate everything again.

Synfig comes into action

Synfig Studio is a free and open-source 2D animation tool, it works with vector graphics as well. It lets you create nice animations using a time line and key frames and lets you easily export the animation. However, it uses its own format, so you can't directly import an SVG. Luckily, the format is open and there are already some ways to transform from SVG to Synfig.

In particular I tried an Inkscape extension named svg2sif which lets you save files in Synfig format and seems to work fine (the page of the extension explains how to install it). I don't know possible limitations of the svg2sif Inkscape extension, so use it with caution, don't expect everything to work fine.

Now that we have the method defined, we will explain it by showing an example.

Creating an object in Inkscape

We start by creating an Inkscape object to be animated later. For this mini tutorial I created a black creature named Bor...ahem! Gishus Maximus:

Modelling Gishus Maximus using Inkscape

Here is the SVG if you are interested on it, sadly WordPress doesn't support SVG files as media files.

With the model defined, we have to save it as Synfig format using the extension, so go to "Save a Copy..." and select the .sif format (added by the svg2sif extension), and save it.

Animating the object in Synfig

Now that we have the Synfig file we open it and voilà, we can animate it. However, there is a bug, probably with the svg2sif extension and the time line is missing. To fix it, we have to create a new document and copy the shape from the one exported by Inkscape to the new one.

The next step is to use your super animation skill and animate the object. In my case I created some kind of eating animation by making a mouth, opening it slow and then closing it fast:

Animating Gishus Maxumis using Synfig

Here is the Synfig file with the animation if you are interested on it.

To export it, use the "Show the Render Settings Dialog" button and configure how much frames per second you want, among other things, and then export it using the Render button. You can export it to different format, for example, a list of separated PNG files for each animation frame or an animated GIF. However, it you can't configure some of the formats and the exported file is not what I wanted so I preferred to export to a list of PNG files and then use the convert tool to create the animated GIF:

Finally, I have a time lapse of how I applied the method if you want to watch it:

Extra section: Importing the animation in your game

After we have separated PNG files for the animation, we can create a sprite sheet or use another tools to create files to be easily imported by a game framework. For this example, I used a Gimp plug-in named Sprite Tape to import all the separated PNG files and create a sprite sheet:

If you are a LibGDX user and want to use the Texture Packer, you can create a folder and copy the PNG files changing their names to animationname_01, animationname_02, etc, and let Texture Packer to automatically import it.

Conclusions

One problem with this method is that you can't easily modify your objects in Inkscape and then automatically import them in Synfig and update the current animation to work with it. So, once you moved to Synfig you have to keep there to avoid making a lot of duplicated work. This could be avoided if Inkscape provided a good animation extension.

Synfig Studio is a great tool but not the best of course, it is not intuitive (as Gimp, Blender and others) and it has some bugs that make it explode without reason. On the other hand, it is open source, free and multi platform and the best part is that it works well for what we need right now ;)

This method allow us to animate vector graphics which is great since it is a way for programmers like us to animate their programmer art :D

Finally, I am not an animation expert at all, so this blog post could be based on some wrong assumptions. So, if you are one, feel free to correct me and share your opinions.

As always, hope you like the post.

VN:F [1.9.22_1171]
Rating: 4.9/5 (14 votes cast)

Testing Android controls on libGDX PC application using libGDX remote

Friday, September 9th, 2011

When testing our games, sometimes we only need to test the game controls on the Android devices, not all the game, and deploying it on the device is always slower than running it on the PC.

The LibGDX library provides a way to send your Android device input data to through the network, one of the possible uses is to control your libGDX PC application with it.

Here is a demo video using the remote input, made by libGDX team:


(note: magic starts after minute 2)

In the case of Super Flying Thing, we need it when testing and debugging some controls that cannot be tested directly on PC like the TiltController for example (we need device orientation data). Recently, we starting using it also to test and customize other controls like the the ClassicController (despite it has a bit of lag in some cases).

Sadly, my camera is also my android phone so I can't make a video of how we are using it.

One interesting point of this is that we could use multiple android devices (and probably other devices like iPod/iPhone/iPad/others) to create multiple wireless controllers for PC, and that, for example, could be funny if we want to make a local multiplayer game.

Another interesting point is that you could implement your own remote input server to read the device input data sent by the GDX Remote Android Application, so you wouldn't be forced to use libGDX in your server application.

VN:F [1.9.22_1171]
Rating: 4.3/5 (7 votes cast)

Building 2d sprites from 3d models using Blender

Wednesday, July 20th, 2011

In this post I want to share the process used to create the ship sprite sheet of Super Flying Thing (STF from now on). I will assume you have a basic experience with Blender or software alike.

Model and texture

The first step will be to get or create a model you want for the sprite sheet. In my case, the ship was created from zero, following this excellent tutorial (a bit boring to watch, but great content). Of course, as I am not an artist and I only dedicated three hours, my model sucks a bit compared to the one of the tutorial.

Set the camera

Now that you have a model, you will have to configure the camera for the Blender rendering process. The idea is to put it pointing to the model, and bring it closer to the model until you get it in the camera view port. The next image shows an example:

In the case of SFT, I configured the view port to be 64x64.

Create the animation

Now, you have to create the animation you want to render. For SFT, I wanted to create the animation of ship rotating 360 degrees. As the speed of the ship is approx 300 degrees per second, and I was using a 30FPS animation, then I wanted to have the matching frames for the complete rotation animation, in this case, 36 frames. So I created one key frame for 0 degrees, 90, 180, 270 and 360 degrees. The last one is only used to complete the interpolation and is not included in the final animation.

ship animation key frames

Be sure to configure the animation to use a linear interpolation to match the frame with the ship's angle, unless you want otherwise. To do that, open the Graph Editor, and from Key menu modify Interpolation Mode to Linear.

Finally, export the animation using Render animation from blender, it will create each frame of the animation in your temp folder. Be aware you will get a better result using an Anti-Aliasing algorithm, for example, Catmull-Rom, thanks void256 for the tip.

Here is the difference:


The left image is not using anti aliasing at all, the right one is using Catmull-Rom with 16 samples per pixel.

And here is the animation:

The process is tools independent, so you could use, for example, 3D Studio if you want. You only need a good artist, as we do.

As always, hope you like the post and it could be of help.

VN:F [1.9.22_1171]
Rating: 5.0/5 (12 votes cast)

Animation4j - Synchronizer

Friday, May 13th, 2011

In this post I will talk a bit more about animation4j project, particularly the Synchronizer class.

When working with transitions we could want to declare them in a seamlessly way. In a previous post I introduced the Transition class which lets you define a transition of an object from one state to another but it requires manual synchronization from transition object values to your own object values. In retrospective, that doesn't seems the best way to achieve seamless usage.

Meet the Synchronizer

For this reason, animation4j provides a class named Synchronizer, which handles all the synchronization internally for you. To create a new transition you have to declare something like this:

	// create a synchronizer in some part of your initialization code
	Synchronizer synchronizer = new Synchronizer();
	
	// create a transition in some parte of your game logic, for example when the user press something
	Vector2f position = new Vector2f(100, 100);
	synchronizer.transition(position, Transitions.transitionBuilder().end(new Vector2f(200, 200)).time(500));

	// this will perform the synchronization, it will set to my object the current value of the transition.
	// normally this call will be on an update() method of your game
	synchronizer.synchronize(delta);

	// so now my object will be update with the new values
	System.out.prinln(position);

note: I used a Vector2f class in the example because it is a known class, all libraries have a Vector implementation.

In the previous example, I create a transition of a Vector2f class from (100,100) to (200, 200) in 500ms.

To register a new transition to be synchronized you call transition() method and each time synchronize(delta) method is called, Synchronizer will perform synchronization of all registered transitions. The registration method comes in to flavors, one will modify the object you pass but it only works if you are using a mutable object. The other one works over the field of an object using reflection and calling public set method to modify the internal field. It works for both mutable and immutable objects because it is setting a new value each time, however, one pending improvement is to modify current field value, instead creating a new one each time, when the field class is mutable.

Synchronizer class could be used in a static way using the Synchronizers class, which holds an internal singleton instance to do all the work. That is really useful when you want to use the synchronization stuff wherever you want. However a restriction is that it will updates all registered transitions and that could be a problem if you have different states for your game, for example, a pause game state which keeps rendering a playing game state, you don't want the transitions started in that state to go on, so in that case could use different instances for each game state.

TransitionBuilder is your friend

Another interesting stuff added to the library is the TransitionBuilder class provided inside the Transitions class. In previous versions, there were different methods to create a Transition using the Transitions factory class, one only specifying speed, other specifying speed and end value, other specifying speed and the interpolation functions, and the list goes on and on. In order to improve this, the TransitionBuilder class was created. It lets you specify the parameters you want when building a Transition, for example:

	Transition transition = Transitions.transitionBuilder().start(v1)
		.end(v2)
		.time(5000)
		.functions(InterpolationFunctions.easeIn(), InterpolationFunctions.easeOut())
		.build();

The previous code will create a transition from value v1 to value v2 in 5000ms using the declared interpolation functions to interpolate between the internal values of v1 and v2 (as explained in a previous post).

These classes simplify a lot working with animation4j but there is still a lot of work to do in order to improve usage and internal performance.

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Using Inkscape as Scene Editor

Tuesday, May 3rd, 2011

On a previous blog post, I wrote about how are we using Inkscape as a Scene Editor for Archer Vs Zombies. Now, I want to talk a bit more about it. The post was going to be a dev log about Archer Vs Zombies but since it is about general Inkscape stuff for games, the original name lost its meaning.

First, I want to share a video showing how changes made in Inkscape are being reflected when the game loads.

note: some of the rocks were moved.

Creating Physics Object

As I probably said before, we are using Box2D to do physics behavior on our games. Box2D provides a way to define bodies based on circle or polygon shapes. Circle shapes are defined by a center and a radius and polygon shapes are defined by a list of vertices with some restrictions explained in Box2D manual.

On the other hand, SVG specification provides a way to specify paths which are used to describe straight lines or curves.

Then, I am creating SVG paths, when building the scene, in a separated Inkscape layer (named Physics) which could be parsed later inside the game to create Box2D polygon shapes. Having a separated layer for those shapes simplify the scene load process and, when working on Inkscape, provides a way to hide or show shapes definitions layer to easily work on the others.

Archers Vs Zombies - Inkscape - Scene Editor

The image shows the polygons of the Physics layer in red color.

Using XML Data to define Physics Bodies properties

One thing we could need in the future is to define more stuff about physics bodies like if they are static or dynamic, their mass, density and others. As said on the previous post, we could add custom XML data to XML nodes of the SVG file and process it when parsing the SVG inside the game to define those properties. For now, I am treating all SVG paths from the Physics layer as static bodies with no properties.

Parsing the SVG - Second part

I wanted to give a second chance to both SVG Salamander and Batik but the main reason to discard them is because both libraries depends on AWT classes and that doesn't work on Android.

In the end, I am using my own and incomplete parser implementation based on Slick2D SVG Parser classes with a lot of modifications because I am not using Slick2D Vector2f and Transform classes and because its doesn't handle SVG images.

Conclusion

After all that work, I feel comfortable working with Inkscape as a Scene Editor and I don't feel the need to implement our own for now. Also, in my opinion, it is similar to Aquaria Scene Editor as you can add sprites, rotate and scale them, move from one layer to another, etc, with limitations like you cannot test the scene until you load it in your game, between others.

Thats all for now, hope you like it.

VN:F [1.9.22_1171]
Rating: 4.5/5 (2 votes cast)

Archers Vs Zombies - Dev Log - 03

Thursday, April 28th, 2011

In the previous post, I was looking for a tool to edit game scenes information in an easy way. Talking with kevglass at LWJGL irc channel he told me he was using Inkscape for that purpose. I also read some time ago that Rocket Bear Games was using it for as level editor as well but I forgot about it.

Inkscape is very interesting for game development because it has a lot of useful features which you could use in different ways in order to achieve what you want. It works mainly with SVG files which are XML.

In this post I will comment some of the features I am using from Inkscape. As I am new with the program, feel free to correct me if I say something wrong about it or if there are better ways or doing stuff.

Working with different layers

The editor lets you work with different layers. These layers will be exported as different groups which could be parsed later in your game to decide different behavior. In my case, I am using two layers for now, one to put the tools (some tiles) and the other one to define the game world, as the next image shows. This is to avoid processing the tools layer when importing the SVG into the game.

Archers Vs Zombies - Inkscape - Scene Editor

Archers Vs Zombies - Inkscape - Scene Editor

Custom XML data

Also, as mentioned in the Rocket Bear Games post, Inkscape provides an easy way to add custom XML data to the file so you can add information you will need later to build the scene in your game. Right now, I am adding information to specify the tile type of each element so they could be correctly imported later in the game.

Parsing the SVG

Parsing the SVG is not an easy task, each node contains a lot of stuff you have to parse in order to get all the information you need. Inkscape adds extra information with its own attributes like labels or the custom XML Data we said before.

Some time ago we used a tiny SVG Java parser named SVG Salamander to make the paths for Zombie Rockers .

I tried using it again to parse Inkscape generated SVG files but I couldn't force it to avoid trying to automatically load images when parsing the XML. The project doesn't contain good documentation about customizing behavior when parsing the file (maybe it even doesn't let you) and the page is a bit outdated, also SVN for the project was not working when I tried to reach it yesterday.

After that, I found Batik from The Apache XML Graphics Project. At first glance, it looked a lot better than the other one, also it is on Maven Central.

Using it wasn't so easy as I thought, I was using the latest version deployed in the Maven central repository but when I took a look at the online documentation it wasn't the same version, the examples were outdated. Another problem of the library is that it seems AWT dependent and that could be a problem if I want to use it on Android.

Also, there were no sources nor javadocs on Maven central so I couldn't explore the library to understand the behavior easily. I was getting a bit bored and anxious to have something working, so I left the library.

At the end, I am parsing the SVG by hand but I plan to give another opportunity to both libraries.

I will talk more about Inkscape and how I am using it in the next posts.

Some comments about last post

About the camera zoom I mentioned the last post, Rubén asked me why not using multi touch well known gestures (it seems natural), I thought about adding them but I remembered some people have single touch devices so they wouldn't be able to use the zoom feature. I end making a single touch implementation, however, I have the idea to implement both solutions in the near future.

VN:F [1.9.22_1171]
Rating: 5.0/5 (2 votes cast)

Animation4j - Interpolation Functions

Saturday, March 26th, 2011

Interpolation Functions are a key concept in animation4j project, they define how to a variable should change from one value to another. To define interpolation functions in animation4j, InterpolatorFunction interface should be implemented, the API looks like this:

public interface InterpolatorFunction {

	/**
	 * @param t
	 *            A real number in the interval [0,1]
	 * @return The interpolated value.
	 */
	float interpolate(float t);

}

So basically, functions works for values of t between interval [0,1]. An example implementation of this function is a linear Bézier:

/**
 * Linear Bézier curve implementation of an InterpolatorFunction.
 * 
 */
public class LinearBezierInterpolatorFunction implements InterpolatorFunction {

	private final float p0, p1;

	public LinearBezierInterpolatorFunction(float p0, float p1) {
		this.p0 = p0;
		this.p1 = p1;
	}

	@Override
	public float interpolate(float t) {
		if (t < 0)
			return p0;
		if (t > 1)
			return p1;
		return (1 - t) * p0 + t * p1;
	}

}

The library already provides some implementations, you could instantiate them using InterpolatorFunctionFactory factory class. The API of the factory looks like this:

	// returns a cubic Bézier interpolation function based on the four specified points.
	InterpolatorFunction cubicBezier(float p0, float p1, float p2, float p3);

	// returns a quadratic Bézier interpolation function based on the four specified points.
	InterpolatorFunction quadratic(float p0, float p1, float p2);

	// returns a cubic Bézier interpolation function with presetted values.
	InterpolatorFunction ease();

	// returns a linear Bézier interpolation function.
	InterpolatorFunction linear();

	// returns a cubic Bézier interpolation function with presetted values.
	InterpolatorFunction easeIn();

	// returns a cubic Bézier interpolation function with presetted values.
	InterpolatorFunction easeOut();

	// returns a cubic Bézier interpolation function with presetted values.
	InterpolatorFunction easeInOut();

In the previous post we talked about transitions of variables from one value to another using Transition interface. When building a transition using the Transitions factory, you could specify the interpolation functions you want to use, if you don't, then linear Bézier functions are used by default. One example of how to create a Transition specifying the interpolation functions looks like this:

Transition<Vector2f> transition = Transitions.transition(
	new Vector2f(0f, 0f), 					// the starting value
	vector2fConverter, 						// the type converter (using two variables)
	InterpolatorFunctionFactory.easeOut(),	// the interpolation function for the first variable
	InterpolatorFunctionFactory.easeIn());	// the interpolation function for the second variable

One thing to mention is that Transitions factory methods use a varargs to specify interpolation functions parameters because we don't know beforehand how many variables you need. In case you specify less functions than variables, then linear Bézier functions will be used for the variables without functions specified.

As we said on the previous post, animation4j API could change since this blog post was written. API used for this post is the one of the current released version 0.0.8 (already uploaded to maven central).

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Animation4j - Transitions

Friday, March 25th, 2011

As we said on a previous post, we are going to talk a bit more about the current released version (0.0.8) of animation4j, remember that the API could change since we wrote this post.

In this case, we are going to talk about making a transition from one value to another in some time. Animation4j provides you one interface to make transitions, the Transition interface, the API by now looks like this:

public interface Transition<T> {

	/**
	 * Returns the current value of the transition.
	 * 
	 */
	T get();

	/**
	 * Start an interpolation from a to b in the specified default time.
	 * 
	 * @param t
	 *            The wanted new value.
	 */
	void set(T t);

	/**
	 * Start an interpolation from a to b in the specified time.
	 * 
	 * @param t
	 *            The wanted new value.
	 * @param time
	 *            The time to set the new value. If time is zero, then value is applied directly.
	 */
	void set(T t, int time);
}

The library uses generics so you can create transitions of any type. To do this, you can use the Transitions factory class, where you can create transitions for your types. The API of the factory class looks like this:

<T> Transition<T> transition(T startValue, TypeConverter<T> typeConverter);

The current Transition generic implementation internally work with a float[] in order to optimize memory and to simplify internal work. To use it, you will have to create a converter from your type to float[] and vice versa by implementing the TypeConverter<T> interface. Current API of TypeConverter<T> looks like this:

/**
 * Provides a way to convert an object in a float[] array and vice versa, for interpolation purposes.
 * 
 * @param <T>
 *            The type to convert.
 * @author acoppes
 */
public interface TypeConverter<T> {

	/**
	 * Returns the quantity of variables are used to convert the object to the float[] and vice versa.
	 * 
	 * @return the quantity of variables used.
	 */
	int variables();

	/**
	 * Copy the values of the object to the specified float array, if null it will create a new float array.
	 * 
	 * @param object
	 *            The object from where to get the values to fulfill the float array.
	 * @param x
	 *            The float array to copy the values of the object. If null it will create a new float array.
	 * @return The float array with the values of the object.
	 */
	float[] copyFromObject(T object, float[] x);

	/**
	 * Copy the values of the float array to the specified object.
	 * 
	 * @param object
	 *            The object which the float array values will be copied to. If null or object immutable, it will create a new object.
	 * @param x
	 *            The float array to get the values to fulfill the object.
	 * @return An object with the values of the float array.
	 */
	T copyToObject(T object, float[] x);

}

Type converters should be stateless, so you can reuse a single type converter for all your transitions of the same type. For the next Vector2f class example:

public class Vector2f {

	public float x,y;

	public Vector2f(float x, float y) {
		set(x,y);
	}

	public void set(float x, float y) {
		this.x = x;
		this.y = y;
	}

}

We could create the next type converter:

public class Vector2fConverter implements TypeConverter<Vector2f> {

	@Override
	public float[] copyFromObject(Vector2f v, float[] x) {
		if (x == null) 
			x = new float[variables()];  // don't worry about garbage generation, the transition implementation will cache these values.
		x[0] = v.x;
		x[1] = v.y;
		return x;
	}

	@Override
	public Vector2f copyToObject(Vector2f v, float[] x) {
		if (v == null)
			v = new Vector2f(0, 0); // don't worry about garbage generation, the transition implementation will cache these values.
		v.x = x[0];
		v.y = x[1];
		return v;
	}

	@Override
	public int variables() {
		// we are only using two variables.
		return 2;
	}
}

So, to create a transition, your code would look like:

TypeConverter<Vector2f> converter = new Vector2fConverter(); // could be reused
Transition<Vector2f> transition = Transitions.transition(new Vector2f(100, 100), converter);

// now, set a transition to (500,500) in five seconds.
transition.set(new Vector2f(500, 500), 5000);

// wait some time, and get the value interpolated
Vector2f v = transition.get();

For more information, there is an transitions example in the examples module.

The idea is to provide different TypeConverter implementations for different libraries as project modules so you don't have to implement a TypeConverter for a Slick2D vector2f, or libgdx Vector2. However it is really easy to implement a type converter and you only have to do it once. Also, you will probably use transitions only for some types.

In one of the next posts, we want to talk about interpolation functions (and how are they used for transitions) as they are key concepts in animation4j project.

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Animation4j Project Introduction

Thursday, March 17th, 2011

Some time ago I started an internal project to simplify working with animations and transitions when making games in Java.

It was used in some of our games, for example ZombieRockers to make different kind of effects like fade in/out of screens or the points messages when scoring, or in JSnakes to make camera effects like zoom in/out, camera movement, etc.

After using it on our games, it became more clear what kind of things are possible with it.

Now that we are using Github for our source code, we started a dedicated project named animation4j with all the stuff related with animations.

This video shows some working examples of the project:

You can download a runnable jar to test the features shown in the video.

The project is on development, so right now there are a lot of things to improve starting by making easy to understand examples.

I plan to add more posts explaining some design decisions and showing how to use the library.

Hope Java developers could find some use for it.

VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)

JNLP Downloader Tool

Wednesday, March 9th, 2011

Some time ago, Rubén wrote a Java based tool to download all JNLP resources and prepare executable files to run it based on the JNLP file values.

It downloads all the resources specified by the JNLP file and save them into /libs and /natives for jar resources and nativelib resources respectively, in the second case it creates sub folders for each platform (Windows, Mac and Linux). After that, it creates one executable script file to run the application for each platform, configuring classpath and java.library.path inside it.

For example, running the tool:

 
 java -jar jnlpdownloader.jar example http://www.example.com/application.jnlp

where the JNLP contents are:

 
<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://www.example.com/" href="application.jnlp">
    <information>
            <title>Some Title</title>
            <vendor>Some Vendor</vendor>
            <description>Some Description</description>
    </information>
    <resources>
            <jar href="slf4j-api-1.5.8.jar" />
            <jar href="google-collections-1.0.jar" />
            <jar href="lwjgl-2.4.2.jar" />
    </resources>
    <resources os="Windows">
            <nativelib href="lwjgl-2.4.2-natives-win.jar" />
    </resources>
    <resources os="Linux">
            <nativelib href="lwjgl-2.4.2-natives-linux.jar" />
    </resources>
    <resources os="Mac">
            <nativelib href="lwjgl-2.4.2-natives-mac.jar" />
    </resources>  
    <application-desc main-class="Main" />
</jnlp>

will create the next file structure:

 
./example
./example/natives
./example/natives/Linux
./example/natives/Linux/liblwjgl.so
./example/natives/Windows
./example/natives/Windows/lwjgl.dll
./example/natives/Mac
./example/natives/Mac/liblwjgl.jnilib
./example/libs
./example/libs/google-collections-1.0.jar
./example/libs/slf4j-api-1.5.8.jar
./example/libs/lwjgl-2.4.2.jar
./example/run-windows.bat
./example/run-macosx.sh
./example/run-linux.sh

More info at the project's home page.

We used this tool mainly to take a snapshot of a deployed Java Web Start application to make it run offline, for demo purposes.

VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)