After some years of Ludum Dare (LD from now on) inactivity, we decided to participate in LD #38 Jam. And when I say we I mean Rubén and I! Of course, since we are great artists, we joined forces with Thony, a young artist who is really really good (just open the link and see it by yourself).

The theme of this LD was “A small world” and our game was Pigs Mayhem in Space:

After iterating over a thousand ideas (yeah, I like to exaggerate, they were only 999) the first day, we ended up with a 3d, turn by turn game where you have to use projectiles and physics to kill the other players (like Worms). This is one of the first concept:

And this is the how the game looked at the end:

Play the game!

Small post mortem

The bad

  • It took us a lot of time to define the game, and that means we did a lot of work on stuff we didn’t use.
  • We didn’t spend time polishing the controls and when we wanted it was already too late. That affected a lot the game experience.

The good

  • We were aligned with the game we wanted to do and with almost every decision.
  • The art style was quickly defined and without setbacks. It helped a lot to visualize the final game.
  • Working together was really smooth, the game was first and all decisions were to make the game better.

Conclusion

Even though Rubén and I work together at Ironhide, we are not in the same team and even though we share stuff between projects, I missed a lot working directly with him in the same project, since, you know, we fight discuss a lot but the results are always better 🙂

This was my first time working with Thony (Rubén and Thony work in the same team at Ironhide) and it was prety awesome. He has good control on 3d tools and Unity and does great 2d art (the game proves it!).

As always, it was a great experience, it helped on exercising the creative process of developing games and learning how different kind of games are made.

Links

The game at itchio

Our Ludum Dare 38 Jam Entry

Thony’s ArtStation page

Some visual references


When working on Iron Marines engine at work we did some research on other RTS games in order to have more knowledge on how they did some stuff and why. In this post, in particular, I want to share a bit of my research on the SC2 Editor which helped a lot when making our own editor.

The objective was to see what a Game Designer could do or not with the SC2 Editor in order to understand some decisions about the editor and the engine itself.

Obviously, by taking a look at the game mods/maps available it is clear that you could build entire games over the SC2 engine, but I wanted to see the basics, how to define and control the game logic.

As a side note, I love RTS games since I was a child, I played a lot of Dune 2 and Warcraft 1. I remember playing with the editors of Command & Conquer and Warcraft 2 also, it was really cool, so much power 😉 and fun. With one of my brothers, each one had to make a map and the other had to play and beat it (we did the same with Doom and Duke Nukem 3d editors).

SC2 Editor

SC2 maps are built with Triggers which are composed by Events, Conditions and Actions to define parts of the game logic. There are a lot of other elements as well that I will talk a bit after explaining the basics.

Here is an image of the SC2 Editor with an advanced map:

Trigger logic

The Triggers are where the general map logic is defined. They are triggered by Events and say which Actions should be performed if given Conditions are met. Even though behind the scenes the logic is C/C++ code and it is calling functions with similar names, the Editor shows it in a natural language like “Is Any Unit of Player1 Alive?” which helps for quick reading and understanding.

This is an example of a Trigger logic of a SC2 campaign map:

Events

Events are a way to Trigger the Trigger logic, in other words, when an event happens the logic is executed. Here is an example of an event triggered when the unit “SpecialMarine” enters the region “Region 001”:

Conditions

Conditions are evaluated in order to execute the actions or not. Here is an example of a condition checking if unit “BadGuy” is alive or not:

Actions

Actions are executed when the event happened and the conditions are met. They could be anything supported by the editor, from ordering a structure to build a unit to showing a mission objective update on screen, among other things.

This example shows an action that enqueues to unit “BadGuy” an attack order with unit “SpecialMarine” as target, replacing existing enqueued orders in that unit. There is another action after that which turns off the Trigger in order to avoid processing its logic again.

The idea with this approach is to build the logic in a descriptive way, the Game Designer has tools to fulfill what he needs in terms of game experience. For example, he needs to make it hard to save a special unit when you reach its location, then he sends a wave of enemies to that point.

I said before that the editor generates C/C++ code behind the scenes, so, for my example:

The code generated behind the scenes is this one:

Here is a screenshot of the example I did, the red guy is the SpecialMarine (controlled by the player) and the blue one is the BadGuy (controlled by the map logic), if you move your unit inside the blue region, BadGuy comes in and attack SpecialMarine:

Even though it is really basic, download my example if you want to test it 😛 .

Parameters

In order to make the Triggers work, they need some values to check against, for example, Region1, is a region previously defined, or “Any Unit of Player1”. Most of the functions for Events, Conditions and Actions have parameters of a given Type, and the Editor allow the user to pick an object of that Type from different sources: a function, a preset, a variable, a value or even custom code:

It shows picking a Unit from units in the map (created instances).

It shows Unit picking from different functions that return a Unit.

This allows the Game Designer to adapt, in part, the logic to what is happening in the game while keeping the main structure of the logic. For example, I need to make the structures of Player2 explode when any Unit of Player1 is in Region1, I don’t care which unit I only care it is from Player1.

Game design helper elements

There are different elements that help the Game Designer when creating the map: Regions, Points, Paths and Unit Groups, among others. These elements are normally not visible by the Player but are really useful to the Game Designer to have more control over the logic.

As said before, the SC2 Editor is pretty complete, it allows you to do a lot of stuff, from creating custom cutscenes to override game data to create new units, abilities, and more but that’s food for another post.

Our Editor v0.1

The first try of creating some kind of editor for our game wasn’t so successful. Without the core of the game clearly defined we tried to create an editor with a lot of the SC2 Editor features. We spent some days defining a lot of stuff in abstract but in the end we aimed too far for a first iteration.

So, after that, we decided to start small. We starting by making a way to detect events over the “being defined core” at that point. An event could be for example: “when units enter an area” or “when a resource spot was captured by a player”.

Here are some of the events of one of our maps:

Note: Even though they are Events we named them Triggers (dunno why), so AreaTrigger is an empty Trigger in terms of SC2 Editor with just an Event.

Events were the only thing in the editor, all the corresponding logic was done in code in one class, corresponding to that map, which captures all events and checks conditions for taking some actions, normally, sending enemies to attack some area.

Here is an example code for some of the previous defined events:

It wasn’t a bad solution but had some problems:

  • The actions were separated from the level design which played against the iteration cycle (at some point our project needed between 10 and 15 seconds to compile in the Unity Editor).
  • Since it needs code to work, it requires programming knowledge and our team Game Designers aren’t so good with code.

Our Editor v0.2

The second (and current) version is more Game Designer friendly, and tends to be more similar to SC2 Editor. Most of the logic is defined in the editor within multiple triggers. Each Trigger is defined as a hierarchy of GameObjects with specific components to define the Events, Conditions and Actions.

Here is an example of a map using the new system:

This declares for example a trigger logic that is activated by time, it has no conditions (so it executes always given the event) and it sends some enemies in sequence and deactivates itself at the end.

We also created a custom Editor window in order to help creating the trigger hierarchy and to simplify looking for the engine Events, Conditions and Actions. Here is part of the editor showing some of the elements we have:

All those buttons automatically create the corresponding GameObject hierarchy with the proper Components in order to make everything work according to plan. Since most of them need parameters, we are using the Unity built-in feature of linking elements given a type (a Component), so for example, for the action of forcing capture a Capturable element by team Soldiers, we have:

Unity allow us to pick a Capturable element (CapturableScript in this case) from the scene. This simplifies a lot the job of configuring the map logic.

Some common conditions could be to check if a resource spot is controlled by a given player or if a structure is alive. Common actions could be, send a wave of enemy units to a given area or deactivate a trigger.

The base code is pretty simple, it mainly defines the API while the real value of this solution is in the custom Events, Conditions and Actions.

Pros

  • Visual, and more Game Designer friendly (it is easier for Programmers too).
  • Faster iteration speed, now we can change things in Editor directly, even in runtime!
  • Easily extensible by adding more Events, Conditions and Actions, and transparent to the Game Designers since they are automatically shown in our Custom Editor.
  • Take advantage of Unity Editor for configuring stuff.
  • Easy to disable/enable some logic by turning on/off the corresponding GameObject, which is good for testing something or disable one logic for a while (for example, during ingame cinematics).
  • More control to the Game Designer, they can test and prototype stuff without asking programming team.
  • Simplified workflow for our ingame cinematics.
  • Compatible with our first version, both can run at the same time.

Cons

  • Merge the stage is harder now that it is serialized with the Unity scene, with code we didn’t have merge problems or at least it was easier to fix. One of the ideas to simplify this is to break the logic in parts and use prefabs for those parts, but it breaks when having links with scene instances (which is a common case).
  • A lot of programming responsibility is transferred to the scripting team which in this case is the Game Design team, that means possibly bad code (for example, duplicated logic), bugs (forget to turn off a trigger after processing the actions) and even performance.

Conclusion

When designing (and coding) a game, it is really important to have a good iteration cycle in each aspect of the game. Having switched to a more visual solution with all the elements at hand and avoiding code as much as we could, helped a lot with that goal.

Since what we end up doing looks similar to a scripting engine, why didn’t we go with a solution like uScript or similar in the first place? the real answer is I didn’t try in depth other Unity scripting solutions out there (not so happy with that), each time I tried them a bit they gave me the feeling it was too much for what we needed and I was unsure how they perform on mobile devices (never tested that). Also, I wasn’t aware we would end up need a scripting layer, so I prefered to evolve over our needs, from small to big.

Taking some time to research other games and play with the SC2 Editor helped me a lot when defining how our engine should work and/or why we should go in some direction. There are more aspects of our game that were influenced in some way by how other RTS games do it, which I may share or not in the future, who knows.

I love RTS games, did I mention that before?


The idea of this post is to show different ideas and analysis on how to use Unity UI Text to show numbers without garbage generation. I need this for a framerate counter and other debug values.

Test case

Shows a fixed digit length number in screen, regenerated each frame with a new random value.

alt text Shows how the test scene used for all test cases work.

Using Strings

Since strings are immutable in c#, common operations on strings generates new strings and hence allocates new heap memory. If you are using strings as temporary values like showing a changing number in a UI text then that memory becomes garbage. In PC that garbage could go unnoticed but not in mobile devices since that could derive in a hiccup when the garbage collector decides to collect it.

The idea with these tests is to try to use make the label work with strings without garbage generation. To detect generated garbage I am using the Unity profiler and avoiding ToString() of int, float, etc, to just calculate the cost of the string manipulation for now.

String concatenation

String concatenation generates 30 Bytes per frame since internally String.Concat() calls String.InternallyAllocateStr().

It is not as bad as expected, it is just creating a new string with the length of the first string plus the second and then it copies their values. Obviously it becomes worse when multiple concatenations are done in secuence.

Test code:

Text text;
 
static readonly string[] numbers = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" };
 
void Start () {
    text = GetComponent<Text> ();
}
 
void Update () {
     
    string a = numbers[UnityEngine.Random.Range(0, numbers.Length)];
    string b = numbers[UnityEngine.Random.Range(0, numbers.Length)];
 
    text.text = a + b;
}

String format

Using string.Format() generates 176 Bytes per frame, internally is using String.FormatHelper + StringBuilder.ToString().  The first one creates a new StringBuilder and the second is the transform from StringBuilder to string.

Test code:

 Text text;
 
 static readonly string[] numbers = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" };
 
 void Start () {
     text = GetComponent<Text> ();
 }
 
 void Update () {
     string a = numbers[UnityEngine.Random.Range(0, numbers.Length)];
     string b = numbers[UnityEngine.Random.Range(0, numbers.Length)];
 
     text.text = string.Format ("{0}{1}", a, b);        
     
 }

String Builder Format

Using cached StringBuilder improves the previous one a bit, it generates 86 Bytes per frame, the AppendFormat is generating garbage and then the set_Length() (used to clear the StringBuilder).

Test code:

 Text text;
 StringBuilder stringBuilder = new StringBuilder(20, 20);
 
 static readonly string[] numbers = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" };
 
 void Start () {
     text = GetComponent<Text> ();
     stringBuilder.Length = 3;
 }
 -j
 void Update () {
     string a = numbers[UnityEngine.Random.Range(0, numbers.Length)];
     string b = numbers[UnityEngine.Random.Range(0, numbers.Length)];
 
     stringBuilder.Length = 0;
     stringBuilder.AppendFormat ("{0}{1}", a, b);
 
     text.text = stringBuilder.ToString();
 }

Note: If I change the StringBuilder starting capacity and max capacity, the cost is the same but goes to ToString() method instead, but internally to the same method String.InternallyAllocateStr().

String Builder only Append

Instead of using StringBuilder.AppendFormat, change to use only String.Append. This reduces the cost to only 30 Bytes per frame (the same of the first one), the only cost here is the set_Length() which internally calls String.InternallyAllocateStr().

Test code:

 Text text;
 StringBuilder stringBuilder = new StringBuilder(20, 20);
 
 static readonly string[] numbers = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" };
 
 void Start () {
     text = GetComponent<Text> ();
     stringBuilder.Length = 3;
 }
 
 void Update () {
     string a = numbers[UnityEngine.Random.Range(0, numbers.Length)];
     string b = numbers[UnityEngine.Random.Range(0, numbers.Length)];
 
     stringBuilder.Length = 0;
     stringBuilder.Append (a);
     stringBuilder.Append (b);
 
     text.text = stringBuilder.ToString();
 }

Note: Does the same behaviour if I change starting and max capacity, the cost is the same but is on ToString() instead of set_Length().

String Builder by replacing chars

If instead of Append I replace chars directly by using [] and avoid the set_Length(), the cost is the same, 30 Bytes per frame, since the String.InternallyAllocateStr() goes to set_Chars().

Test code:

 Text text;
 StringBuilder stringBuilder = new StringBuilder(20, 20);
 
 static readonly char[] numbers = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' };
 
 void Start () {
     text = GetComponent<Text> ();
     stringBuilder.Length = 3;
 }

 void Update () {
     char a = numbers[UnityEngine.Random.Range(0, numbers.Length)];
     char b = numbers[UnityEngine.Random.Range(0, numbers.Length)];
 
     stringBuilder [0] = a;
     stringBuilder [1] = b;
 
     text.text = stringBuilder.ToString();
 }

Note: Again, does the same behaviour if I change starting and max capacity, instead of set_Chars(), the cost is in ToString() method.

String Builder, access internal string by reflection

There is a suggestion at in this post to access by refleciton to _str field from StringBuilder class to avoid the cost of ToString() method.

Test code:

 Text text;
 StringBuilder stringBuilder = new StringBuilder(20, 20);

 static System.Reflection.FieldInfo _sb_str_info = 
        typeof(StringBuilder).GetField("_str", 
        System.Reflection.BindingFlags.NonPublic | 
        System.Reflection.BindingFlags.Instance);
 
 static readonly char[] numbers = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' };
 
 void Start () {
     stringBuilder.Length = 3;
 
     text = GetComponent<Text> ();
 }
 
 void Update () {
     stringBuilder[0] = numbers[UnityEngine.Random.Range(0, numbers.Length)];
     stringBuilder[1] = numbers[UnityEngine.Random.Range(0, numbers.Length)];
     stringBuilder[2] = (char) 0;
 
     var internalValue = _sb_str_info.GetValue (stringBuilder) as string;
     text.text = internalValue;
 }

In this case, there is no garbage at all. However, I see no change in the UI Text even though the editor shows the text field value is changing, like it is not being redrawn in screen. I suppose that could be because the string pointer is not changing and by taking a look at the Text code from the Unity UI it is comparing with != instead of Equals… not sure here.

 public virtual string text
 {
     get
     {
         return m_Text;
     }
     set
     {
         if (String.IsNullOrEmpty(value))
         {
             if (String.IsNullOrEmpty(m_Text))
                 return;
             m_Text = "";
             SetVerticesDirty();
         }
         else if (m_Text != value)
         {
             m_Text = value;
             SetVerticesDirty();
             SetLayoutDirty();
         }
     }
 }

I tried by forcing layout and vertices dirty after updating internal string, just in case, but had no luck (sad face).

Caching strings

Another option suggested in this blog post is to precache strings for different numbers but that is only reasonable for a small amount of digits. I like it because it is simple and could be generated at runtime, and works well for debug numbers like FPS where the number is normally between 0 and 60.

I tried it and it works really well and generates 0 Bytes per frame.

Test code:

 Text text;
 
 string[] generated;
 
 // Use this for initialization
 void Start () {
     text = GetComponent<Text> ();
 
     generated = new string[100];
 
     // should go from 0 to 99.
     for (int i = 0; i < 100; i++) {
         generated [i] = string.Format ("{0:00}", i);
     }
 }
 
 // Update is called once per frame
 void Update () {
     int random = UnityEngine.Random.Range (0, generated.Length);
     text.text = generated [random];
 }

Rendering numbers directly

One possible way to avoid all this garbage (I mean both the code and the unused memory) is to not use strings at all but to just render to the screen images for each number digit, where each digit is a different sprite.

When making TinyWarriors prototype I did a basic number rendering where I could specify the number of digits and it just created multiple Unity UI Images inside a horizontal layout.

alt text Shows a test using images for each digit instead of a text.

Test code:

public Image[] numbers;

// in order, like 0, 1, 2, ..., 9
public Sprite[] numberSprites;

public bool fillZero = true;

void Start()
{
  SetNumber (0);
}

public void SetNumber(int number)
{
  int tens = (number % 100) / 10;
  int ones = (number % 10);

  var tensActive = fillZero || tens != 0;
  var onesActive = fillZero || number > 0;

  numbers [0].gameObject.SetActive (tensActive);
  numbers [1].gameObject.SetActive (onesActive);

  if (tensActive)
      numbers [0].sprite = numberSprites [tens];

  if (onesActive)
      numbers [1].sprite = numberSprites [ones];
}

public void Update()
{
  int random = UnityEngine.Random.Range (0, 100);
  SetNumber (random);
}

The code could be adapted to support more digits. When profiling it in editor there is a lot of garbage generation, around 1KB per frame, in Canvas.SendWillRendereCanvases() because it is forcing a material rebuild each time a sprite is changed. However, I tested it on devices and it doesn’t so it must be something related with the Unity editor.

Other strategies

Other strategies include minimizing the garbage generation by reducing the text update frequency, for example, by avoiding updating the text if the number didn’t change and/or updating the text from time to time and not every frame.

Conclusion

Since I just wanted a solution for a framerate counter (and other debug numbers) the last solutions are perfect and I believe those could even be extrapolated for other game needs, like showing the player points in an arcade game, with a bit of extra thinking.

References

Here is a list of some articles, forum and blog posts I took a look during the tests and the post writing.

Unity memory optimizations article - https://unity3d.com/es/learn/tutorials/temas/performance-optimization/optimizing-garbage-collection-unity-games

Memory management reference - http://www.memorymanagement.org/

FPS implementation caching strings - http://catlikecoding.com/unity/tutorials/frames-per-second/

Using reflection to set StringBuilder string to avoid garbage - http://www.defectivestudios.com/devblog/garbage-free-string-unity/

FPS Asset - http://blog.codestage.ru/unity-plugins/fps/

Another FPS Asset - https://www.assetstore.unity3d.com/en/#!/content/6513

StringBuilder API - https://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=vs.110).aspx

Performance tips for Unity for mobile - https://divillysausages.com/2016/01/21/performance-tips-for-unity-2d-mobile/

Unity UI Source code - https://bitbucket.org/Unity-Technologies/ui

Untiy Community Library - https://github.com/UnityCommunity/UnityLibrary


This is a small blog post about a Unity editor window we made at work to simplify our lives when using Unity.

In Unity, when you select a reference to an asset, it is focused in the Project window, losing the current selection and probably the folder you were working on. Since there is no navigation history, most of the time having to search the previous selection is a pain in the ass.

As we were doing some stuff today at work, we were inspired (after two million times we lost our selection) so I decided to do a simple Editor Window to store and show a history of selected objects. It took me like 30 minutes to make it (plus one more hour at home).

Here are the results:

In case you are interested in using and/or improving it, here is the github project:

https://github.com/acoppes/unity-history-window

As always, hope you like it.

Guardar

Guardar


After five years of Global Game Jam vacations, we joined this year’s the last weekend.

It was a really enjoyable time and we had a lot of fun. In this blog post I would love to share my experience as some kind of postmortem article with animated gifs, because you know, animated gifs rules.

The Theme of this jam was “Waves” and together with my team we did a 1v1 fighting game where players have to attack each other by sending waves through the floor tiles to hit the adversary.

Here is a video of our creation:

My team was composed by:

Here are links to download the game and to its source code:

Postmortem

Developing a game in two days is a crazy experience and so much can happen, it is a incredible survival test where you try not to kill each other (joking) while making the best game ever (which doesn’t happen, of course). Here is my point of view of what went right and what could have been better.

What went right

From the beginning we knew we wanted to complete the jam with something done, and with that we mean nothing incomplete goes inside the game. That helped us to keep a small and achievable scope for the time we had.

When brainstorming the game we had luck in some way and reached a solid idea twenty minutes before sharing a pitch to the rest of the jammers, after being discussing by a couple of hours. The good part was not only we were happy with it but it also was related with the theme (we wanted to do a beat’em up but we couldn’t figure out how to link it with it).

Deciding to use familiar tools like Github, Unity and Adobe Animate and doing something we all had experience in some way helped us a lot to avoid unnecessary complications. I have to mention too that half of the team works together at Ironhide so we know each other well.

Our first prototypes, both visual and mechanical, were completed soon enough to validate we were right about the game and they also were a great guide during development. Here are two gifs about each one.

alt text Visual prototype made in Adobe Animate.

alt text Game mechanics prototype made in Unity

Our artists did a great job with the visual style direction which was really aligned with the setting and background story we thought while brainstorming. If you are interested here is the story behind the game.

alt text The awesome visual style of the game.

Using the physics engine sometimes seems like exaggerating a bit, mainly with small games but the truth is, when used right, it could help to achieve unexpected mechanics that add value to the game while simplifying things. In our case we used to detect not only when a wave hits a player but also to detect when to animate the tiles and it was not only a good decision but also really fun.

alt text Animated tiles with hitbox using physics.

Using good practices like prototyping small stuff in separated Unity scenes, like we did with the tile animations, allowed us to quickly iterate a lot on how things should behave so they become solid before integrating with the rest of the game.

Knowing when to say no to new stuff, to keep focus on small, achievable things, even though, from time to time, we spent some time to think new and crazy ideas.

Having fun was a key pillar to develop the game in time while keeping the good mood during the jam.

What could have been better

We left the sound effects to the end and couldn’t iterate enough so we aren’t so happy with the results. However, it was our fault, the dude that did the sounds was great and helped us because a lot (if you are reading, Thank you!). In the future, a better approach would be to quickly test with sounds like voice made or similar downloaded effects from other games, to give him better references to work with.

Not giving room to learn and integrate things like visual effects and particles which would have improved the game experience a lot. Next time we should spend some time to research what we wanted to do and how it could be done before discarding it, I am sure some lighting effects could have improved a lot the visual experience.

We weren’t fast enough to adapt part of the art we were doing to what the game mechanics were leading us, that translates to doing art we couldn’t implement or it is not appreciated enough because it doesn’t happen a lot during the game. If we reacted faster to that we could have dedicated more time in other things we wanted to do.

Too many programmers for a small game didn’t help us when dividing tasks in order to do more in less time. In some way this forced us to work together in one machine and it wasn’t bad at all. It is not easy to know how many programmers we needed before making the team nor adapting the game to the number of programmers. In the end I felt it was better to keep a small scope instead of trying to do more because a programmer is idle. In our case our third programmer helped with game design, testing and interacting with the sounds guy.

Since the art precedes the code, it should be completed with time before integrating it and since we couldn’t anticipate the assets we almost can’t put them in the game. In fact we couldn’t integrate some. The lesson is, test the pipeline and know art deadline is like two hours before the game jam’s end in order to give time to programmers.

Using Google Drive not in the best way complicated things when sharing assets from artists to developers to integrate in the game since we had to upload and download manually. A better option would have been using Dropbox since it automatically syncs. Another would have been forcing artists to integrate them in the game themselves using Unity and Git to share it, but I didn’t want them to hate me so quick so they avoided this growth opportunity.

The game wasn’t easy to balance since it needed 2 players in order to test and improve it. Our game designer tried the game each time a new player came to see what we were doing but that were isolated cases. I believe were affected a bit by the target resolution of the first visual prototype in terms of game space which left us only with the wave speed factor but if we changed to too slow the experience was affected.

We didn’t start brainstorming fast enough, it was a bit risky and we almost didn’t find a game in time. For the next time, we should start as soon as possible.

Some of the ideas we say no because of the scope were really fun and in some way we may have lose some opportunities there.

Drinking too much beer on Saturday could have reduced our capacity but since we can’t prove it we will not stop drinking beer during Global Game Jams.

Conclusion

Participating on the Global Game Jam was great but you have to have free weekends to do it, for some of us it is not that simple to make time to join the event but I’m really sure it worth it.

I hope to have time for the next one and see our potential unleashed again. Until then, thanks my team for making a good game with me in only one weekend.

Cheers.